搜索熱:郭偉燦 3D打印
掃一掃 加微信
首頁 > 期刊論文 > 論文摘要
316L奧氏體不銹鋼表面低溫氣體滲碳層的熱穩定性能
          
Thermal Stability of Low Temperature Gas Carburized Layer on Surface of 316L Austenitic Stainless Steel

摘    要
對表面低溫氣體滲碳強化處理的316L奧氏體不銹鋼進行300~400 ℃保溫150,1 500,3 000 h時效處理,研究了時效溫度及時間對表面滲碳層物相組成、厚度、納米硬度和殘余應力的影響,分析了其熱穩定性能。結果表明:滲碳層在溫度300~400 ℃的時效過程中無新型碳化物析出;在400 ℃時效時,碳原子向基體內部擴散,滲碳層厚度明顯增加,當時效時間為3 000 h時,滲碳層與基體的界面消失,表面納米硬度降至基體的50%;當在300 ℃時效時,滲碳層厚度、碳含量以及納米硬度均沒有明顯變化,此溫度下服役時滲碳層較為穩定;經300~400 ℃時效處理后,滲碳層的表面殘余壓應力均下降,且時效溫度越高、時效時間越長,殘余壓應力下降的幅度越大。
標    簽 316L奧氏體不銹鋼   低溫氣體滲碳   碳擴散   時效   熱穩定性能   316L austenitic stainless steel   low temperature gaseous carburization   carbon diffusion   aging   thermal stability  
 
Abstract
316L austenitic stainless steel was surface enhanced by low temperature gaseous carburization, and then aged at 300-400 ℃ for 150, 1 500, 3 000 h, respectively. The effects of aging temperature and time on phase composition, thickness, nano-hardness and residual stress of the carburized surface layer were investigated. The thermal stability was analyzed. The results show that no new carbides precipitated in the carburized layer during aging at 300-400 ℃. When aged at 400 ℃, carbon atoms diffused into the substrate, leading to an obvious thickness increase of the carburized layer. The interface between the carburized layer and the substrate disappeared, and the surface nano-hardness decreased to 50% that of substrate after aging at 400 ℃ for 3 000 h. When aged at 300 ℃, the thickness, carbon content and nano-hardness of the carburized layer changed little; the carburized layer was relatively stable during working at 300 ℃. After aging at 300-400 ℃, the surface residual compressive stress of the carburized layer decreased, and the decreasing amplitude was larger at a higher aging temperature or for a longer aging time.

中圖分類號 TG156   DOI 10.11973/jxgccl201903002

 
  中國光學期刊網論文下載說明


所屬欄目 試驗研究

基金項目 國家自然科學基金資助項目(51475224);江蘇省高校自然科學研究重大項目(14KJA470002);江蘇省普通高校學術學位研究生科研創新計劃項目(KYZZ16_0234);江蘇高校品牌專業建設工程項目(PPZY2015A022)

收稿日期 2018/1/31

修改稿日期 2019/1/15

網絡出版日期

作者單位點擊查看

備注孫寧(1991-),男,山東棗莊人,碩士研究生

引用該論文: SUN Ning,JIANG Yong,CHEN Jinyan,PENG Yawei,GONG Jianming. Thermal Stability of Low Temperature Gas Carburized Layer on Surface of 316L Austenitic Stainless Steel[J]. Materials for mechancial engineering, 2019, 43(3): 7~12
孫寧,姜勇,陳金燕,彭亞偉,鞏建鳴. 316L奧氏體不銹鋼表面低溫氣體滲碳層的熱穩定性能[J]. 機械工程材料, 2019, 43(3): 7~12


論文評價
共有人對該論文發表了看法,其中:
人認為該論文很差
人認為該論文較差
人認為該論文一般
人認為該論文較好
人認為該論文很好
分享論文
分享到新浪微博 分享到騰訊微博 分享到人人網 分享到 Google Reader 分享到百度搜藏分享到Twitter

參考文獻
【1】SOUZA R M, IGNAT M, PINEDO C E, et al. Structure and properties of low temperature plasma carburized austenitic stainless steels[J]. Surface and Coatings Technology, 2009, 204(6/7):1102-1105.
 
【2】梁磊, 趙陽, 劉世宏, 等. 凝汽器材料的耐磨蝕性能及電化學性能[J]. 腐蝕與防護, 2015, 36(8):717-720.
 
【3】姜海一, 張雅琴, 賈國棟, 等. 奧氏體不銹鋼制容器失效典型案例分析[C]//2006年全國失效分析與安全生產高級研討會論文集. 北京:中國機械工程學會, 2006.
 
【4】韓棟, 劉道新, 劉樹濤. 汽輪機低壓轉子2Cr13不銹鋼葉片斷裂分析[J]. 機械工程材料, 2007, 31(7):45-48.
 
【5】陳星, 姜濤, 陶春虎,等. 液壓泵柱塞彈簧斷裂失效分析[J]. 機械工程材料, 2009, 33(11):86-89.
 
【6】KOLSTER B H. Development of a stainless and wear-resistant steel[J]. Materialen, 1987, 8:1-12.
 
【7】ERNST F, CAO Y, MICHAL G M. Carbides in low-temperature-carburized stainless steels[J]. Acta Materialia, 2004, 52(6):1469-1477.
 
【8】LIU W J, BRIMACOMBE J K, HAWBOLT E B. Influence of composition on the diffusivity of carbon in steels:I. Non-alloyed austenite[J]. Acta Metallurgica et Materialia, 1991, 39(10):2373-2380.
 
【9】CAO Y, ERNST F, MICHAL G M. Colossal carbon supersaturation in austenitic stainless steels carburized at low temperature[J]. Acta Materialia, 2003, 51(14):4171-4181.
 
【10】SATOMI N, KANAYAMA N, WATANABE Y, et al. Effects of heat treatment conditions on formation of expanded-austenite phase in austenitic stainless steels by combining active screen and DC plasma carburizing processes[J]. Materials Transactions, 2017, 58(8):1181-1189.
 
【11】CHRISTIANSEN T L, STÅHL K, BRINK B K, et al. On the carbon solubility in expanded austenite and formation of Hägg carbide in AISI 316 stainless steel[J]. Steel Research International, 2016, 87(11):1395-1405.
 
【12】ICHⅡ K, FUJIMURA K, TAKASE T. Structure of the ion-nitrided layer of 18-8 stainless steel[J]. Technology Reports of Kansai University, 1986, 27:135-144.
 
【13】LEWIS D B, LEYLAND A, STEVENSON P R, et al. Metallurgical study of low-temperature plasma carbon diffusion treatments for stainless steels[J]. Surface and Coatings Technology, 1993, 60(1/2/3):416-423.
 
【14】O'DONNELL L J, MICHAL G M, ERNST F, et al. Wear maps for low temperature carburised 316L austenitic stainless steel sliding against alumina[J]. Surface Engineering, 2010, 26(4):284-292.
 
【15】CESCHINI L, CHIAVARI C, LANZONI E, et al. Low-temperature carburised AISI 316L austenitic stainless steel:Wear and corrosion behaviour[J]. Materials & Design, 2012, 38:154-160.
 
【16】SUN Y, CHIN L Y. Residual stress evolution and relaxation in carbon S phase layers on AISI 316 austenitic stainless steel[J]. Surface Engineering, 2002, 18(6):443-446.
 
【17】MICHAL G M, ERNST F, KAHN H, et al. Carbon supersaturation due to paraequilibrium carburization:Stainless steels with greatly improved mechanical properties[J]. Acta Materialia, 2006, 54(6):1597-1606.
 
【18】AGARWAL N, KAHN H, AVISHAI A, et al. Enhanced fatigue resistance in 316L austenitic stainless steel due to low-temperature paraequilibrium carburization[J]. Acta Materialia, 2007, 55(16):5572-5580.
 
【19】SUN Y. Corrosion behaviour of low temperature plasma carburised 316L stainless steel in chloride containing solutions[J]. Corrosion Science, 2010, 52(8):2661-2670.
 
【20】TSUJIKAWA M, YOSHIDA D, YAMAUCHI N, et al. Surface material design of 316 stainless steel by combination of low temperature carburizing and nitriding[J]. Surface and Coatings Technology, 2005, 200(1):507-511.
 
【21】MARTIN F J, LEMIEUX E, NEWBAUER T, et al. Localized corrosion resistance of LTCSS-carburized materials to seawater immersion[J]. ECS Transactions, 2007, 3(31):613-621.
 
【22】BUHAGIAR J, SPITERI A, SACCO M, et al. Augmentation of crevice corrosion resistance of medical grade 316LVM stainless steel by plasma carburising[J]. Corrosion Science, 2012, 59:169-178.
 
【23】MARTINAVI ACČG IUS A, ABRASONIS G, SCHEINOST A C, et al. Nitrogen interstitial diffusion induced decomposition in AISI 304L austenitic stainless steel[J]. Acta Materialia, 2012, 60(10):4065-4076.
 
【24】LI X Y, THAIWATTHANA S, DONG H, et al. Thermal stability of carbon S phase in 316 stainless steel[J]. Surface Engineering, 2002, 18(6):448-451.
 
【25】ROTUNDO F, CESCHINI L, MARTINI C, et al. High temperature tribological behavior and microstructural modifications of the low-temperature carburized AISI 316L austenitic stainless steel[J]. Surface and Coatings Technology, 2014, 258:772-781.
 
【26】WANG J, LI Z, WANG D, et al. Thermal stability of low-temperature carburized austenitic stainless steel[J]. Acta Materialia, 2017, 128:235-240.
 
【27】姜勇, 孫寧, 李洋, 等. 316L奧氏體不銹鋼低溫超飽和氣體滲碳層熱穩定性研究[J]. 熱加工工藝, 已接收.
 
【28】榮冬松, 姜勇, 鞏建鳴. 奧氏體不銹鋼低溫超飽和滲碳實驗及熱動力學模擬研究[J]. 金屬學報, 2015, 51(12):1516-1522.
 
【29】CHRISTIANSEN T, SOMERS M A J. Characterisation of low temperature surface hardened stainless steel[J]. Struers Journal of Materialography, 2006, 9(9):2-17.
 
【30】ERNST F, CAO Y, MICHAL G M, et al. Carbide precipitation in austenitic stainless steel carburized at low temperature[J]. Acta Materialia, 2007, 55(6):1895-1906.
 
【31】姜勇.奧氏體不銹鋼低溫氣體滲碳表面強化性能及在新能源中應用的研究[D].南京:南京工業大學,2017.
 
【32】THAIWATTHANA S, LI X Y, DONG H, et al. Comparison studies on properties of nitrogen and carbon S phase on low temperature plasma alloyed AISI 316 stainless steel[J]. Surface Engineering, 2002, 18(6):433-437.
 
相關信息
   標題 相關頻次
 預應變對304奧氏體不銹鋼低溫氣體滲碳的影響
 8
 高溫載荷作用下20G鋼的性能及顯微組織演變
 6
 650 ℃等溫時效過程中P92鋼沉淀相的轉變規律
 5
 P92鋼中Laves相在時效過程中的形成及粗化規律
 5
 10號鋼U型換熱管的泄漏原因
 4
 奧氏體不銹鋼低溫表面滲碳技術的研究進展
 4
 醋酸回收罐進口管泄漏原因
 4
 低溫氣體滲碳對形變304L不銹鋼抗點蝕性能的影響
 4
 煤制氣裝置變換氣分離器浮閥的失效分析
 4
 時效時間對20Cr32Ni1Nb鋼顯微組織與力學性能的影響
 4
 未使用316L不銹鋼輸送管線的失效分析
 4
 0Cr18Ni9/20G鋼異質焊接接頭的耐硫化氫應力腐蝕開裂性能
 3
 H2S環境中液化石油氣球罐用16MnR鋼的腐蝕特性
 3
 PTA裝置干燥機換熱管的失效原因
 3
 采用修正θ投影法預測Cr25Ni35Nb爐管鋼的蠕變性能
 3
 長期服役后鉑重整反應器的高溫損傷及剩余壽命
 3
 等溫時效模擬研究12Cr1MoV鋼在長期高溫服役過程中碳化物的轉變規律
 3
 電化學充氫前后304L奧氏體不銹鋼的塑性對比
 3
 高溫堿液濃度與溫度及應變速率對316L不銹鋼應力腐蝕開裂的影響
 3
 鍋爐水冷壁下聯箱定排管泄漏的原因
 3
 國產和進口P92耐熱鋼顯微組織、拉伸和蠕變性能的對比
 3
 基于修正θ投影法的爐管用Cr25Ni35Nb鋼蠕變壽命預測
 3
 加熱爐管爆管失效分析
 3
 精對苯二甲酸生產裝置中TA2螺柱的斷裂原因
 3
 冷加工變形對1Cr18Ni9Ti不銹鋼在含溴醋酸溶液中耐腐蝕性能的影響
 3
 敏化對304L不銹鋼在高溫NaOH溶液中應力腐蝕開裂的影響
 3
 某熱電廠20G鋼鍋爐水冷壁管鼓包的原因
 3
 濃度和溫度對316L不銹鋼在NaOH溶液中應力強激光與粒子束腐蝕開裂行為的影響
 3
 氫對304L奧氏體不銹鋼力學性能的影響
 3
 塑性預變形對316L奧氏體不銹鋼氫脆的影響
 3